The Rheumatologist
COVID-19 News
  • Connect with us:
  • Facebook
  • Twitter
  • LinkedIn
  • YouTube
  • Feed
  • Home
  • Conditions
    • Rheumatoid Arthritis
    • SLE (Lupus)
    • Crystal Arthritis
      • Gout Resource Center
    • Spondyloarthritis
    • Osteoarthritis
    • Soft Tissue Pain
    • Scleroderma
    • Vasculitis
    • Systemic Inflammatory Syndromes
    • Guidelines
  • Resource Centers
    • Ankylosing Spondylitis Resource Center
    • Gout Resource Center
    • Rheumatoid Arthritis Resource Center
    • Systemic Lupus Erythematosus Resource Center
  • Drug Updates
    • Biologics & Biosimilars
    • DMARDs & Immunosuppressives
    • Topical Drugs
    • Analgesics
    • Safety
    • Pharma Co. News
  • Professional Topics
    • Ethics
    • Legal
    • Legislation & Advocacy
    • Career Development
      • Certification
      • Education & Training
    • Awards
    • Profiles
    • President’s Perspective
    • Rheuminations
  • Practice Management
    • Billing/Coding
    • Quality Assurance/Improvement
    • Workforce
    • Facility
    • Patient Perspective
    • Electronic Health Records
    • Apps
    • Information Technology
    • From the College
    • Multimedia
      • Audio
      • Video
  • Resources
    • Issue Archives
    • ACR Convergence
      • Systemic Lupus Erythematosus Resource Center
      • Rheumatoid Arthritis Resource Center
      • Gout Resource Center
      • Abstracts
      • Meeting Reports
      • ACR Convergence Home
    • American College of Rheumatology
    • ACR ExamRheum
    • Research Reviews
    • ACR Journals
      • Arthritis & Rheumatology
      • Arthritis Care & Research
      • ACR Open Rheumatology
    • Rheumatology Image Library
    • Treatment Guidelines
    • Rheumatology Research Foundation
    • Events
  • About Us
    • Mission/Vision
    • Meet the Authors
    • Meet the Editors
    • Contribute to The Rheumatologist
    • Subscription
    • Contact
  • Advertise
  • Search
You are here: Home / Articles / COPA Genetic Mutation Identified in Lung Disease, Arthritis

COPA Genetic Mutation Identified in Lung Disease, Arthritis

June 15, 2015 • By Lara C. Pullen, PhD

  • Tweet
  • Email
Print-Friendly Version / Save PDF

A great deal of what is known about COPA comes from analysis of yeast. Randy Sheckman, PhD, of the University of California, Berkeley was awarded the Nobel Prize in Physiology or Medicine in 2013 for his discoveries of machinery regulating vesicle traffic. He identified a complex of three proteins that together attach to the surface of the endoplasmic reticulum. This attachment must precede budding of the membrane and the formation of transport vesicles. The complexes are known as coat protein complex I (COPI) and coat protein complex II (COPII). Thousands of these complexes coat the budding surface of a vesicle, creating a sac and recruiting the correct protein cargo. COPA represents a subunit of COPI and appears to be important in intra­cellular transport via COPI. Although COPII transports from the rough ER to the Golgi complex, COPI transports from the Golgi complex to the rough ER. The pathways have been fleshed out to some extent; however, most of the research has taken place in yeast, and the system has not been well studied in mammalian cells.

You Might Also Like
  • New Genetic Loci Identified, Epigenome Explored in Juvenile Idiopathic Arthritis
  • 2015 ACR/ARHP Annual Meeting: Next Generation Sequencing and Disease Mechanisms
  • ADA2 Mutation Connects Vascular Pathology to Immunodeficiency
Explore This Issue
June 2014, June 2015
Also By This Author
  • Distinct Autoantigens Found in Patients with Scleroderma & Coincident Cancer

Once COPA had been identified as the relevant protein, the investigators measured COPA expression in the affected patients. They were surprised to discover that COPA was expressed at normal levels in these individuals. Recognizing the essential nature of the COPA protein for intracellular transport, Dr. Shum and colleagues next determined the functional consequence of the COPA variants. They hypothesized that the mutant COPA resulted in defective intracellular transport via COPI. This was supported by the observation that the COPA mutations seen in the patients appeared to render the protein dysfunctional. Further investigation revealed that the COPA variants impaired binding to proteins targeted for retrograde transport (Golgi-to-ER). Although the experiments stopped short of specifically demonstrating a trafficking defect, such a defect is the most likely explanation for the data.

ad goes here:advert-1
ADVERTISEMENT
SCROLL TO CONTINUE

Trigger of Autoimmunity

The investigators then sought to identify physiological effects of COPA variants that might link the mutation mechanistically with autoimmune disease. They performed dynamic functional assessments of patient-derived cells and found evidence of ER stress in patients with mutant COPA. In an attempt to understand the specific role of mutant COPA on ER stress, the researchers performed small interfering RNA (siRNA)–mediated knockdown experiments in human embryonic kidney (HEK) cells. The results confirmed the ER stress, but the investigators were unable to determine how the ER stress led to autoimmunity. Although the path to pathology has not yet been elucidated, the authors propose the possibility that the COPA mutation might compromise autophagy. The hypothesis stems from previous studies that have indicated an association between autophagy and autoimmunity.

Patients do not need to have a clear family history in order to indicate that a COPA mutation is important in their pathology.

The team next examined CD4+ T cells in individuals with mutant COPA. They found that patient-derived CD4+ T cells were significantly skewed toward the T helper type 17 (Th17) phenotype implicated in autoimmunity. Moreover, BLCLs derived from patients with mutant COPA showed significant elevations of transcripts encoding interleukin (IL) 1β, IL-6 and IL-23. Thus, faulty protein trafficking by mutant COPA resulted in cellular stress as well as upregulation of cytokines that triggered a Th17 response. The investigators hypothesize that such an impairment in the cellular trafficking may mean that misfolded proteins are being mistakenly released. It is possible that these misfolded proteins trigger an autoimmune response due to their cryptic nature.

Why the Lung?

The investigators do not have an explanation for why this mutation preferentially affects the lung. “That’s the big mystery,” noted Dr. Shum. “Why the lung? Why the joint?” COPA is ubiquitously expressed and so it seems strange that the autoimmune syndrome is restricted to the lung and joints. He hypothesized that cells in the lung and joint may be particularly dependent on the retrograde transport.

ad goes here:advert-2
ADVERTISEMENT
SCROLL TO CONTINUE

Pages: 1 2 3 | Single Page

Filed Under: Conditions Tagged With: Arthritis, autoimmunity syndrome, COPA, genetic mutation, joint, lung disease, ResearchIssue: June 2014, June 2015

You Might Also Like:
  • New Genetic Loci Identified, Epigenome Explored in Juvenile Idiopathic Arthritis
  • 2015 ACR/ARHP Annual Meeting: Next Generation Sequencing and Disease Mechanisms
  • ADA2 Mutation Connects Vascular Pathology to Immunodeficiency
  • Interleukin 1-alpha Is Critical for Establishment of Inflammatory Lung Disease

American College of Rheumatology

Visit the official website for the American College of Rheumatology.

Visit the ACR »

Meeting Abstracts

Browse and search abstracts from the ACR Convergence and ACR/ARP Annual Meetings going back to 2012.

Visit the Abstracts site »

ACR Convergence

Don’t miss rheumatology’s premier scientific meeting for anyone involved in research or the delivery of rheumatologic care or services.

Visit the ACR Convergence site »

The Rheumatologist newsmagazine reports on issues and trends in the management and treatment of rheumatic diseases. The Rheumatologist reaches 11,500 rheumatologists, internists, orthopedic surgeons, nurse practitioners, physician assistants, nurses, and other healthcare professionals who practice, research, or teach in the field of rheumatology.

About Us / Contact Us / Advertise / Privacy Policy / Terms of Use

  • Connect with us:
  • Facebook
  • Twitter
  • LinkedIn
  • YouTube
  • Feed

Copyright © 2006–2021 American College of Rheumatology. All rights reserved.

ISSN 1931-3268 (print)
ISSN 1931-3209 (online)

loading Cancel
Post was not sent - check your email addresses!
Email check failed, please try again
Sorry, your blog cannot share posts by email.
This site uses cookies: Find out more.