Video: Every Case Tells a Story| Webinar: ACR/CHEST ILD Guidelines in Practice

An official publication of the ACR and the ARP serving rheumatologists and rheumatology professionals

  • Conditions
    • Axial Spondyloarthritis
    • Gout and Crystalline Arthritis
    • Myositis
    • Osteoarthritis and Bone Disorders
    • Pain Syndromes
    • Pediatric Conditions
    • Psoriatic Arthritis
    • Rheumatoid Arthritis
    • Sjögren’s Disease
    • Systemic Lupus Erythematosus
    • Systemic Sclerosis
    • Vasculitis
    • Other Rheumatic Conditions
  • FocusRheum
    • ANCA-Associated Vasculitis
    • Axial Spondyloarthritis
    • Gout
    • Psoriatic Arthritis
    • Rheumatoid Arthritis
    • Systemic Lupus Erythematosus
  • Guidance
    • Clinical Criteria/Guidelines
    • Ethics
    • Legal Updates
    • Legislation & Advocacy
    • Meeting Reports
      • ACR Convergence
      • Other ACR meetings
      • EULAR/Other
    • Research Rheum
  • Drug Updates
    • Analgesics
    • Biologics/DMARDs
  • Practice Support
    • Billing/Coding
    • EMRs
    • Facility
    • Insurance
    • QA/QI
    • Technology
    • Workforce
  • Opinion
    • Patient Perspective
    • Profiles
    • Rheuminations
      • Video
    • Speak Out Rheum
  • Career
    • ACR ExamRheum
    • Awards
    • Career Development
  • ACR
    • ACR Home
    • ACR Convergence
    • ACR Guidelines
    • Journals
      • ACR Open Rheumatology
      • Arthritis & Rheumatology
      • Arthritis Care & Research
    • From the College
    • Events/CME
    • President’s Perspective
  • Search

U.S. Scientists Unveil Powerful New Tools to Fix Genetic Faults

Julie Steenhuysen  |  October 26, 2017

CHICAGO (Reuters)—U.S. scientists on Wednesday unveiled two new molecular editing tools designed to fix mutations that cause the majority of human genetic diseases, some of which have no known treatment.

One technique, by David Liu of Harvard University and the Broad Institute of MIT and Harvard, offers a highly precise way to fix single-letter mistakes in genes, which are stretches of DNA.

ad goes here:advert-1
ADVERTISEMENT
SCROLL TO CONTINUE

A second, by Broad Institute molecular biologist Feng Zhang, focuses on editing RNA, which carries the genetic instructions to make proteins, without altering DNA.

Both techniques build off of the game-changing CRISPR-Cas9 gene editing tool, a type of molecular scissors for trimming unwanted parts of the human genome to replace with new stretches of DNA. The genome consists of six billion DNA letters, or chemical bases.

ad goes here:advert-2
ADVERTISEMENT
SCROLL TO CONTINUE

In a paper published in the journal Nature, Liu and colleagues build on his pioneering work called base editing. Unlike CRISPR, which causes breaks in DNA, base editing chemically corrects single-letter errors in DNA.

“CRISPR is like scissors, and base editors are like pencils,” Liu said in a statement.

Base editing tinkers with DNA’s four chemical bases, adenine (A), cytosine (C), guanine (G) and thymine (T). It takes two bases to form base pairs which make up rungs in the spiral DNA ladder, and they follow specific rules – C pairs with G, and T pairs with A.

Single-letter mistakes, called point mutations, can give rise to genetic diseases. Last year, Liu’s team described a base editor that could change CG base pairs into AT pairs.

In a paper published in September, researchers at Sun Yat-sen University in China described using that system to correct a faulty gene that causes the blood disorder called beta-thalassemia in human embryos.

For the latest study, Liu’s lab researchers engineered an entirely new enzyme that could convert an AT to a GC pair, something that had previously not been possible.

The research goal was tantalizing because about half of the 32,000 disease-associated point mutations are caused when an GC base pair mistakenly becomes an AT in a specific spot in the genome.

“They came up with an enzyme that is very specific and very effective,” said Dana Carroll, a gene-editing expert at the University of Utah who was not involved in the research. “It really was a heroic effort, and very beautifully done.”

Carroll said gene editing enzymes would be very useful tools for both research and practical studies in medicine and possibly agriculture.

Page: 1 2 | Single Page
Share: 

Filed under:ConditionsTechnology Tagged with:base editingCRISPR-Cas9 gene editing toolDavid LiuFeng Zhangfix genetic mutations

Related Articles
    Gene Manipulation Has Potential to Alter Genomes, Impact Society

    Gene Manipulation Has Potential to Alter Genomes, Impact Society

    January 19, 2016

    Every so often, a major scientific breakthrough profoundly alters the trajectory of scientific research. In the 1960s, microbiologists sparked the recombinant-DNA revolution with the discovery that bacteria have innate immune systems based on restriction enzymes. These enzymes bind and cut invading viral genomes at specific short sequences, and scientists rapidly repurposed them to cut and…

    Experts Discuss the Latest Precision Medicine Research

    February 18, 2018

    SAN DIEGO—In just two decades, precision medicine has gone from futuristic concept to realistic toolbox for clinical physicians. At the 2017 ACR Clinical Research Conference on Nov. 3, the Precision Medicine in Rheumatic Diseases: Hopes and Challenges lecture featured rheumatologists and experts on genetics, genomics, pharmaco­genetics and big data who spoke about the latest research…

    A 52-Year-Old Lupus Paper Remains Important Today

    December 14, 2020

    Over 50 years ago, an article appeared in The New England Journal of Medicine: “Immunologic Factors and Clinical Activity in Systemic Lupus Erythema­tosus.”1 Written by a young postdoctoral fellow, Peter H. Schur, MD, and colleagues, the article synthesized important work in the field at the time. What follows is a discussion of the historical context…

    Technological Advances Linked to Medical Misadventures

    April 15, 2016

    For keen students of American politics, the unending intrigue of the 2016 presidential race has been riveting. With an assemblage of aspiring candidates that, at its start, included a bevy of U.S. senators and former governors, a media-savvy real estate mogul, a renowned Hopkins neurosurgeon and an ophthalmologist, political junkies among us have feasted on…

  • About Us
  • Meet the Editors
  • Issue Archives
  • Contribute
  • Advertise
  • Contact Us
  • Copyright © 2025 by John Wiley & Sons, Inc. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies. ISSN 1931-3268 (print). ISSN 1931-3209 (online).
  • DEI Statement
  • Privacy Policy
  • Terms of Use
  • Cookie Preferences