Video: Every Case Tells a Story| Webinar: ACR/CHEST ILD Guidelines in Practice

An official publication of the ACR and the ARP serving rheumatologists and rheumatology professionals

  • Conditions
    • Axial Spondyloarthritis
    • Gout and Crystalline Arthritis
    • Myositis
    • Osteoarthritis and Bone Disorders
    • Pain Syndromes
    • Pediatric Conditions
    • Psoriatic Arthritis
    • Rheumatoid Arthritis
    • Sjögren’s Disease
    • Systemic Lupus Erythematosus
    • Systemic Sclerosis
    • Vasculitis
    • Other Rheumatic Conditions
  • FocusRheum
    • ANCA-Associated Vasculitis
    • Axial Spondyloarthritis
    • Gout
    • Psoriatic Arthritis
    • Rheumatoid Arthritis
    • Systemic Lupus Erythematosus
  • Guidance
    • Clinical Criteria/Guidelines
    • Ethics
    • Legal Updates
    • Legislation & Advocacy
    • Meeting Reports
      • ACR Convergence
      • Other ACR meetings
      • EULAR/Other
    • Research Rheum
  • Drug Updates
    • Analgesics
    • Biologics/DMARDs
  • Practice Support
    • Billing/Coding
    • EMRs
    • Facility
    • Insurance
    • QA/QI
    • Technology
    • Workforce
  • Opinion
    • Patient Perspective
    • Profiles
    • Rheuminations
      • Video
    • Speak Out Rheum
  • Career
    • ACR ExamRheum
    • Awards
    • Career Development
  • ACR
    • ACR Home
    • ACR Convergence
    • ACR Guidelines
    • Journals
      • ACR Open Rheumatology
      • Arthritis & Rheumatology
      • Arthritis Care & Research
    • From the College
    • Events/CME
    • President’s Perspective
  • Search

Autoantibodies in Autoimmune Myopathy

Ruth Jessen Hickman, MD  |  Issue: September 2017  |  September 18, 2017

Dr. Aggarwal notes, “If you have anti-TIF1-γ antibody, your prognosis is going to be poorer because you have higher likelihood to develop cancer associated dermatomyositis. This risk is much worse in elderly patients.” The antibody is particularly helpful because of its high negative predictive value. Patients with DM who are negative for anti-TIF1-γ have a low probability of occult malignancy.10

Some researchers argue that the distinction between autoantibodies associated with myositis, myositis-specific autoantibodies and myositis-associated autoantibodies, may not be valuable.

Some researchers argue that the distinction between autoantibodies associated with myositis, myositis-specific autoantibodies and myositis-associated autoantibodies, may not be valuable.
AJPhoto / Science Source

Dr. Gunawardena explains that there are sometimes differences in the ways myositis autoantibodies manifest in juvenile and adult DM. “For example, anti-TIF1-γ in juvenile DM [is associated] with difficult skin disease and ulceration, but not with cancer.”

ad goes here:advert-1
ADVERTISEMENT
SCROLL TO CONTINUE

Anti-Signal Recognition Particle (SRP) Autoantibody
Clinicians should think about anti-SRP autoantibodies in patients with severe, acute myopathy that is difficult to treat. The autoantibody forms against a cytoplasmic ribonucleoprotein called signal recognition particle.2,3

“Patients with anti-SRP antibody develop very severe muscle weakness [and] very high muscle enzyme levels, and they tend to develop atrophy rather quickly. The prognosis of these patients in terms of disability or muscle strength recovery is poor,” explains Dr. Aggarwal. “However, anti-SRP antibody patients don’t have any extramuscular manifestations, so these patients tend to live longer.”

ad goes here:advert-2
ADVERTISEMENT
SCROLL TO CONTINUE

Because MSAs are specific to IIMs, these autoantibodies can play a role in distinguishing IIMs from inherited or sporadic degenerative myopathies, such as muscular dystrophies.11 Anti-SRP autoantibodies, in particular, are often helpful in this context.2

Anti-SAE Autoantibody & Anti-MJ/NXP2 Autoantibody
Another MSA targets the small ubiquitin-like modifier activating enzyme (SAE). This autoantibody is associated with characteristic skin disease that initially presents without muscle disease. The clinical phenotype often includes systemic features, such as gastrointestinal involvement and dysphagia.3

The anti-MJ/NXP2 autoantibody targets a protein involved in the regulation of cellular senescence. Dr. Gunawardena notes, “The anti-NXP2 subset is associated with calcinosis in both adult and juvenile cases.” The autoantibody is also associated with muscle contractures and severe disease. Some studies have also shown an increased risk of cancer with this autoantibody, although this needs to be further investigated.12

High levels of anti-MDA5 despite treatment are a sign of refractory lung disease & increased mortality risk.

FHL-1
The newest myositis autoantibody to be reported is anti-FHL-1 (four-and-a-half LIM domain), an autoantibody against a muscle-specific protein. In contrast, most other MSAs are derived from proteins expressed ubiquitously.

Notably, mutations in the FHL-1 gene are associated with several known X-linked hereditary myopathies. In terms of IIM, this autoantibody is predictive of severe myopathy, dysphagia and vasculitis. The researchers who uncovered this autoantibody used a muscle-specific cDNA library to uncover autoantigens expressed in muscle tissue. Other researchers may use this approach to uncover other potential autoantibody targets in in IIM.13

New Classification Scheme for IIMs

A variety of classification schemes for IIMs have been proposed over the years, incorporating a variety of clinical and laboratory findings.14 Most recently, the International Myositis Classification Criteria Project (IMCCP) has been working with support from both the ACR and the European League of Associations for Rheumatology (EULAR) to define new classification criteria for IIM and its major subgroups.15 The Boards of EULAR and ACR recently approved this new set of classification criteria for IIMs. These criteria are currently pending publication while they undergo a second round of reviews.

Page: 1 2 3 4 5 6 7 | Single Page
Share: 

Filed under:ConditionsMyositisOther Rheumatic ConditionsResearch Rheum Tagged with:autoantibodiesAutoimmune diseaseClassificationconnective tissue diseasedermatomyositisDiagnosisidiopathic inflammatory myopathiesmyositispatient carepolymyositisprognosisResearchrheumatologistrheumatologySystemic sclerosisTestTreatment

Related Articles

    New Tools for Myositis Diagnosis, Classification & Management

    April 15, 2019

    CHICAGO—At Hot Topics in Myositis, a session at the 2018 ACR/ARHP Annual Meeting, three experts discussed new classification criteria for idiopathic inflammatory myopathies (IIM) and offered practical primers on overlap myositis conditions and inclusion body myositis (IBM). New Myositis Classification Criteria After a 10-year development process, the new EULAR/ACR Classification Criteria for Adult and Juvenile…

    Tashatuvango / shutterstock.com

    Myositis-Specific Antibodies Identified

    January 16, 2020

    The idiopathic inflammatory myopathies (IIM) encompass eight categories: 1) dermatomyositis (DM) in adults, 2) juvenile dermatomyositis, 3) amyopathic DM, 4) cancer-associated DM, 5) polymyositis, 6) immune-mediated necrotizing myopathy, 7) inclusion body myositis, and 8) overlap myositis.1 These categories help classify the myopathies based on clinical and histologic features. The incidence of IIM is estimated at…

    Myositis Mysteries

    January 1, 2008

    Why isn’t my myositis patient getting better?

    From Strength to Strength: Idiopathic Inflammatory Myopathy Diagnosis & Management

    December 2, 2021

    During the ACR Convergence 2021 Review Course, Rohit Aggarwal, MD, MS, provided an update on idiopathic inflammatory myopathy.

  • About Us
  • Meet the Editors
  • Issue Archives
  • Contribute
  • Advertise
  • Contact Us
  • Copyright © 2025 by John Wiley & Sons, Inc. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies. ISSN 1931-3268 (print). ISSN 1931-3209 (online).
  • DEI Statement
  • Privacy Policy
  • Terms of Use
  • Cookie Preferences