Video: Every Case Tells a Story| Webinar: ACR/CHEST ILD Guidelines in Practice

An official publication of the ACR and the ARP serving rheumatologists and rheumatology professionals

  • Conditions
    • Axial Spondyloarthritis
    • Gout and Crystalline Arthritis
    • Myositis
    • Osteoarthritis and Bone Disorders
    • Pain Syndromes
    • Pediatric Conditions
    • Psoriatic Arthritis
    • Rheumatoid Arthritis
    • Sjögren’s Disease
    • Systemic Lupus Erythematosus
    • Systemic Sclerosis
    • Vasculitis
    • Other Rheumatic Conditions
  • FocusRheum
    • ANCA-Associated Vasculitis
    • Axial Spondyloarthritis
    • Gout
    • Psoriatic Arthritis
    • Rheumatoid Arthritis
    • Systemic Lupus Erythematosus
  • Guidance
    • Clinical Criteria/Guidelines
    • Ethics
    • Legal Updates
    • Legislation & Advocacy
    • Meeting Reports
      • ACR Convergence
      • Other ACR meetings
      • EULAR/Other
    • Research Rheum
  • Drug Updates
    • Analgesics
    • Biologics/DMARDs
  • Practice Support
    • Billing/Coding
    • EMRs
    • Facility
    • Insurance
    • QA/QI
    • Technology
    • Workforce
  • Opinion
    • Patient Perspective
    • Profiles
    • Rheuminations
      • Video
    • Speak Out Rheum
  • Career
    • ACR ExamRheum
    • Awards
    • Career Development
  • ACR
    • ACR Home
    • ACR Convergence
    • ACR Guidelines
    • Journals
      • ACR Open Rheumatology
      • Arthritis & Rheumatology
      • Arthritis Care & Research
    • From the College
    • Events/CME
    • President’s Perspective
  • Search

Does the Metal-Fatigue Principle Apply to Elderly Bones?

Mary Beth Nierengarten  |  Issue: August 2018  |  August 16, 2018

JHrebicek / shutterstock.com

JHrebicek / shutterstock.com

Can principles from engineering provide a broader understanding of how the human skeleton works and be used to help prevent a common and often consequential event for people as they age—bone fractures?

Research from a team of investigators that includes orthopedic surgeons and mechanical engineers suggests that, yes, looking at how engineered materials, such as metals and ceramics, function over time can illuminate how bones behave as a person ages.

ad goes here:advert-1
ADVERTISEMENT
SCROLL TO CONTINUE

In particular, the research focuses on fatigue as the missing link between bone fragility and fracture as aptly stated in the title of a recent study, “Fatigue as the Missing Link Between Bone Fragility and Fracture.”1 Fatigue, used in terms of fracture mechanics, implies that a material’s mechanical resistance will decrease over time as a result of repetitive, or cyclic, loading. Fatigue failure refers to the number of cycles, or the time needed, for the material to be damaged via crack growths that cause the material failure.

Applying this to the human skeleton, the investigators propose that some bone fractures in older people are the result of cyclic loading, producing microcracks that, over time, result in fatigue fracture. Older people are more susceptible to this type of fracture because of the well-known fact that bone remodeling and repair slows with age, but also, the investigators suggest, because the quality of bone in older people is decreased, evidenced by the decreased capacity of bone to handle weight-bearing loads.

Dr. Acevedo

Dr. Acevedo

“Most people think the elderly break a bone because they fall,” says lead author of the study Claire Acevedo, PhD, assistant professor, Department of Mechanical Engineering, University of Utah, Salt Lake City. The research, she says, suggests the “bone is already damaged by microcracks before they fall, so the fall may occur on an already partly broken bone or the fall may even be induced because the bone breaks at some point.”

New Insight into Skeleton Pathology

Calling the research fascinating, Thomas Parker Vail, MD, James L. Young Professor and chairman, Department of Orthopaedic Surgery, University of California, San Francisco, says it represents a new look at how bone responds and communicates within its own structure, as well as outside that structure.

Through imaging, he says the investi­gators have shown the tiny canals that connect osteocytes within the bone. If you overlay this imaging on images of neuronal networks, he says, the similarity is astounding.

Page: 1 2 3 | Single Page
Share: 

Filed under:Conditions Tagged with:bonebone breakbone remodelingFractures

Related Articles

    Osteoporosis Experts Discuss Bisphosphonate Holidays

    November 24, 2020

    ACR CONVERGENCE 2020—Bisphosphonates are an important treatment for millions of older Americans with osteoporosis because the drugs inhibit osteoclastic bone resorption to reduce the risk of painful, debilitating fractures.1 More than 20 years ago, data emerged that bisphosphonates have a long terminal half-life.2 So after years of therapy, could some patients take a drug holiday?…

    Unexpected Benefits of Bisphosphonates after Hip Fracture

    February 3, 2012

    Recent trials show this bisphosphonates can reduce subsequent hip fractures and mortality, while remaining cost effective.

    Build Up Bone

    June 1, 2007

    Current management of osteoporosis

    Reading Rheum

    March 1, 2007

    Handpicked Reviews of Contemporary Literature

  • About Us
  • Meet the Editors
  • Issue Archives
  • Contribute
  • Advertise
  • Contact Us
  • Copyright © 2025 by John Wiley & Sons, Inc. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies. ISSN 1931-3268 (print). ISSN 1931-3209 (online).
  • DEI Statement
  • Privacy Policy
  • Terms of Use
  • Cookie Preferences