Video: Every Case Tells a Story| Webinar: ACR/CHEST ILD Guidelines in Practice

An official publication of the ACR and the ARP serving rheumatologists and rheumatology professionals

  • Conditions
    • Axial Spondyloarthritis
    • Gout and Crystalline Arthritis
    • Myositis
    • Osteoarthritis and Bone Disorders
    • Pain Syndromes
    • Pediatric Conditions
    • Psoriatic Arthritis
    • Rheumatoid Arthritis
    • Sjögren’s Disease
    • Systemic Lupus Erythematosus
    • Systemic Sclerosis
    • Vasculitis
    • Other Rheumatic Conditions
  • FocusRheum
    • ANCA-Associated Vasculitis
    • Axial Spondyloarthritis
    • Gout
    • Psoriatic Arthritis
    • Rheumatoid Arthritis
    • Systemic Lupus Erythematosus
  • Guidance
    • Clinical Criteria/Guidelines
    • Ethics
    • Legal Updates
    • Legislation & Advocacy
    • Meeting Reports
      • ACR Convergence
      • Other ACR meetings
      • EULAR/Other
    • Research Rheum
  • Drug Updates
    • Analgesics
    • Biologics/DMARDs
  • Practice Support
    • Billing/Coding
    • EMRs
    • Facility
    • Insurance
    • QA/QI
    • Technology
    • Workforce
  • Opinion
    • Patient Perspective
    • Profiles
    • Rheuminations
      • Video
    • Speak Out Rheum
  • Career
    • ACR ExamRheum
    • Awards
    • Career Development
  • ACR
    • ACR Home
    • ACR Convergence
    • ACR Guidelines
    • Journals
      • ACR Open Rheumatology
      • Arthritis & Rheumatology
      • Arthritis Care & Research
    • From the College
    • Events/CME
    • President’s Perspective
  • Search

Orexin’s Yin/Yang Functions Regulate Bone Remodeling

Lara C. Pullen, PhD  |  July 3, 2014

Orexin is a critical, but previously unrecognized, rheostat of skeletal homeostasis. It functions centrally in the brain, via orexin receptor 2 (OX2R), to enhance bone formation. It also functions peripherally in bone, via orexin receptor 1 (OX1R), to suppress bone formation. The tension between these two functions provides a key to understanding how both the neuronal and endocrine systems control bone remodeling.

Wei Wei, PhD, a researcher at the Department of Pharmacology at the University of Texas Southwestern Medical Center in Dallas and colleagues published their detailed study of orexin in the June 3 online issue of Cell Metabolism.1

ad goes here:advert-1
ADVERTISEMENT
SCROLL TO CONTINUE

They began their investigation by examining orexin knockout mice and found that these mice have low bone mass and decreased bone formation. In these mice, the bone formation marker N-terminal propeptide of type 1 procollagen (P1NP) was 30% lower than in wild-type (WT) control mice, but levels of the bone resorption marker C-terminal telopeptide fragments of the type 1 collagen (CTX-1) were unchanged.

Orexin Receptor Knockout Mice

The investigators next asked whether the orexin regulation of bone mass is mediated by OX1R, OX2R, or both. Using cells from WT mice, they found that OX1R expression is suppressed during osteoblast differentiation, but elevated during adipocyte differentiation. They then looked to see whether OX1R inhibits bone formation in vivo. They found that OX1R knockout mice have high bone mass as a result of a shift in differentiation from marrow adipocyte to osteoblast. These mice also have significant up-regulation of ghrelin protein in their tibiae.

ad goes here:advert-2
ADVERTISEMENT
SCROLL TO CONTINUE

The investigators concluded that OX1R regulation of ghrelin expression occurs locally in the bone and the shift in cell differentiation is triggered by higher osseous ghrelin expression. In this way, OX1R suppresses osteoblast differentiation and bone formation. The results are consistent with OX1R being antiosteoblastogenic, but proadipogenic.

The investigators also examined osteoclastogenesis in the OX1R knockout mice. They found that the reduced bone resorption seen in these mice is mediated by a decreased receptor activator of NF-ҡB ligand (RANKL)/osteoprotegerin (OPG) ratio.

To better understand the complete role of orexin in bone metabolism, Wei et al investigated OX2R knockout mice and found low bone mass and decreased bone formation, suggesting that OX2R enhances bone formation. To test this hypothesis, they infused an OX2R-selective agonist (OX2R-AG) into the lateral ventricles of WT mice and reported remarkably enhanced bone mass in these mice after 35 days of treatment. Further, intracerebroventricular injection of OX2R-AG attenuated bone loss in ovariectomized mice.

Page: 1 2 | Single Page
Share: 

Filed under:ConditionsOsteoarthritis and Bone DisordersResearch Rheum Tagged with:bone formationbone remodelingOsteoporosisResearch

Related Articles

    A Duet of Bone and the Immune System

    July 12, 2011

    Examining emerging perspectives in osteoimmunology

    New Treatments Needed to Prevent Fractures in Osteoporosis

    June 1, 2014

    Current therapies target pathways of bone remodeling, but rheumatologists say a better understanding of the mechanisms of bone resorption, formation is needed to make an impact

    Build Up Bone

    June 1, 2007

    Current management of osteoporosis

    New Data May Explain the Role of Sclerostin in Bone Formation

    October 9, 2017

    New research in mice shows that sclerostin deficiency may play a significant role in bone formation, possibly despite skeletal age. In the study, sclerostin-deficient mice more readily formed cortical bone and had increases in periosteal bone formation rates, as well as increased expression of the Wnt inhibitor Dkk1, than controls…

  • About Us
  • Meet the Editors
  • Issue Archives
  • Contribute
  • Advertise
  • Contact Us
  • Copyright © 2025 by John Wiley & Sons, Inc. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies. ISSN 1931-3268 (print). ISSN 1931-3209 (online).
  • DEI Statement
  • Privacy Policy
  • Terms of Use
  • Cookie Preferences