Video: Every Case Tells a Story| Webinar: ACR/CHEST ILD Guidelines in Practice

An official publication of the ACR and the ARP serving rheumatologists and rheumatology professionals

  • Conditions
    • Axial Spondyloarthritis
    • Gout and Crystalline Arthritis
    • Myositis
    • Osteoarthritis and Bone Disorders
    • Pain Syndromes
    • Pediatric Conditions
    • Psoriatic Arthritis
    • Rheumatoid Arthritis
    • Sjögren’s Disease
    • Systemic Lupus Erythematosus
    • Systemic Sclerosis
    • Vasculitis
    • Other Rheumatic Conditions
  • FocusRheum
    • ANCA-Associated Vasculitis
    • Axial Spondyloarthritis
    • Gout
    • Psoriatic Arthritis
    • Rheumatoid Arthritis
    • Systemic Lupus Erythematosus
  • Guidance
    • Clinical Criteria/Guidelines
    • Ethics
    • Legal Updates
    • Legislation & Advocacy
    • Meeting Reports
      • ACR Convergence
      • Other ACR meetings
      • EULAR/Other
    • Research Rheum
  • Drug Updates
    • Analgesics
    • Biologics/DMARDs
  • Practice Support
    • Billing/Coding
    • EMRs
    • Facility
    • Insurance
    • QA/QI
    • Technology
    • Workforce
  • Opinion
    • Patient Perspective
    • Profiles
    • Rheuminations
      • Video
    • Speak Out Rheum
  • Career
    • ACR ExamRheum
    • Awards
    • Career Development
  • ACR
    • ACR Home
    • ACR Convergence
    • ACR Guidelines
    • Journals
      • ACR Open Rheumatology
      • Arthritis & Rheumatology
      • Arthritis Care & Research
    • From the College
    • Events/CME
    • President’s Perspective
  • Search

Tips for Designing Studies That Actually Reveal Causal Inference

Ruth Jessen Hickman, MD  |  Issue: May 2021  |  May 13, 2021

In a randomized, controlled trial, the risk difference between groups is interpreted as a causal effect of the treatment, according to Seoyoung C. Kim, MD, ScD, MSCE, an associate professor of medicine in the Division of Pharmacoepidemiology and Pharmacoeconomics and the Division of Rheumatology, Inflammation and Immunity at Brigham and Women’s Hospital and Harvard Medical School, and an instructor in epidemiology at the Harvard T.H. Chan School of Public Health, Boston.

But when a randomized, controlled trial can’t be conducted, well-designed and well-executed observational analyses can be useful for causal inference. Dr. Kim says estimation of causal effects in such studies is challenging, but doable with careful methodological consideration.

ad goes here:advert-1
ADVERTISEMENT
SCROLL TO CONTINUE

Dr. Kim presented this and other information on the key concepts of causal inference and mediation analysis in a virtual course sponsored by the VERITY grant (Value and Evidence in Rheumatology Using Bioinformatics and Advanced Analytics) on March 4. Through this and other offerings, VERITY is helping promote highly rigorous research in clinical topics in rheumatology.

Causal Inference

In her presentation, Dr. Kim focused on topics related to causal inference, the process of determining the independent, actual effects of a component within a system. These can be visualized with the help of directed acyclic graphs, which can be used as tools to think through the possible causal ways a variety of factors might interact.

ad goes here:advert-2
ADVERTISEMENT
SCROLL TO CONTINUE

Dr. Kim discussed multiple common mistakes researchers make in constructing their studies and repeatedly emphasized the importance of correct initial study design. Various statistical methods, where appropriate, are also important to help minimize confounding, such as multivariable adjustment, stratification, propensity score methods, etc. However, Dr. Kim added, “Even if you have all kinds of fancy statistical methods, if your design is wrong, it will not save your study.”

Although several different kinds of observational studies are available to researchers, Dr. Kim emphasized that to infer a causal effect, the treatment exposure must occur prior to assessed outcomes. Thus, cross-sectional, case series or case control studies are not well suited to causal inference.

Dr. Kim made an important distinction between common causes in a network of events (e.g., confounders) and common effects (i.e., colliders in the language of causal inference). Confounders are variables that causally influence both the original event and the outcome being studied, whereas colliders are factors that may be causally influenced by both the original event and the studied outcome.

Although it is critical to make statistical adjustments for common causes to remove confounding, adjusting for common effects will introduce selection bias into the results. “The difficult part is that it is not always clear which is a confounder [and which is a collider] unless you set your timeline correctly,” she explained. “Also, you need to have expert knowledge to determine these factors. Not all statistical methods can tell you which is a confounder and which is a collider.”

Dr. Kim also warned against a common study design in which nonusers of a treatment are compared with prevalent users (e.g., current users or ever users). In other words, patients using a drug of interest are compared to those not taking any treatment at all. But in clinical practice, there may be important confounding reasons why a patient might not be prescribed a treatment, such as increased frailty or less severe symptoms.

“If you happen to have a similar drug to use as a reference to the drug of interest, that is, an active comparator design, the unmeasured confounder will be much less,” Dr. Kim explained.

Page: 1 2 3 4 | Single Page
Share: 

Filed under:Research Rheum Tagged with:Causestudy designtrials

Related Articles

    Thick Skin & Solid Research: Necessary Ingredients for Publishing Success

    June 1, 2023

    Scientific publishing requires a commitment to clear writing, concise narratives and a willingness to accept feedback. Daniel Solomon, MD, editor-in-chief of Arthritis & Rheumatology, provides insights into his experiences.

    Research Roundup: Abstract Data Presented at ACR Convergence 2021

    February 11, 2022

    The research presented at ACR Convergence 2021 had a broad scope. Below are details on three studies that addressed cardiovascular safety in treat-to-target strategies, phase 2 study results on the efficacy of tigulixostat and the impact of patient preference on treatment adherence. Take our quiz after you read this article. Treat to Target Abstract L06:…

    Meet the Incoming Arthritis & Rheumatology Editor in Chief, Dr. Daniel Solomon

    December 18, 2019

    Daniel Solomon, MD, MPH, has practiced rheumatology for more than 20 years, all while conducting translational and clinical research and teaching young clinicians. Soon, he will also step into the role of editor in chief of Arthritis & Rheumatology, as Richard J. Bucala, MD, PhD, ends his tenure. He will assume some duties during a…

    The 2020 ACR Awards of Distinction & Masters Class

    November 12, 2020

    Presidential Gold Medal The highest award the ACR can bestow, the Presidential Gold Medal is awarded in recognition of outstanding achievements in rheumatology over an entire career. This year’s award went to James O’Dell, MD, the Stokes-Shackleford Professor of Internal Medicine, vice chair of internal medicine and chief of the Division of Rheumatology at the…

  • About Us
  • Meet the Editors
  • Issue Archives
  • Contribute
  • Advertise
  • Contact Us
  • Copyright © 2025 by John Wiley & Sons, Inc. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies. ISSN 1931-3268 (print). ISSN 1931-3209 (online).
  • DEI Statement
  • Privacy Policy
  • Terms of Use
  • Cookie Preferences