Video: Every Case Tells a Story| Webinar: ACR/CHEST ILD Guidelines in Practice

An official publication of the ACR and the ARP serving rheumatologists and rheumatology professionals

  • Conditions
    • Axial Spondyloarthritis
    • Gout and Crystalline Arthritis
    • Myositis
    • Osteoarthritis and Bone Disorders
    • Pain Syndromes
    • Pediatric Conditions
    • Psoriatic Arthritis
    • Rheumatoid Arthritis
    • Sjögren’s Disease
    • Systemic Lupus Erythematosus
    • Systemic Sclerosis
    • Vasculitis
    • Other Rheumatic Conditions
  • FocusRheum
    • ANCA-Associated Vasculitis
    • Axial Spondyloarthritis
    • Gout
    • Psoriatic Arthritis
    • Rheumatoid Arthritis
    • Systemic Lupus Erythematosus
  • Guidance
    • Clinical Criteria/Guidelines
    • Ethics
    • Legal Updates
    • Legislation & Advocacy
    • Meeting Reports
      • ACR Convergence
      • Other ACR meetings
      • EULAR/Other
    • Research Rheum
  • Drug Updates
    • Analgesics
    • Biologics/DMARDs
  • Practice Support
    • Billing/Coding
    • EMRs
    • Facility
    • Insurance
    • QA/QI
    • Technology
    • Workforce
  • Opinion
    • Patient Perspective
    • Profiles
    • Rheuminations
      • Video
    • Speak Out Rheum
  • Career
    • ACR ExamRheum
    • Awards
    • Career Development
  • ACR
    • ACR Home
    • ACR Convergence
    • ACR Guidelines
    • Journals
      • ACR Open Rheumatology
      • Arthritis & Rheumatology
      • Arthritis Care & Research
    • From the College
    • Events/CME
    • President’s Perspective
  • Search

Artificial Intelligence Gives Rheumatologists an Assist

Mary Beth Nierengarten  |  Issue: June 2021  |  June 14, 2021

As the novel coronavirus that causes COVID-19 spreads across the globe, innovative thinking is needed more than ever to counter the devastating effects on the physical and socioeconomic health of individuals and communities. Innovations in healthcare delivery not yet fully realized prior to the pandemic, such as the adoption of telehealth, are moving to the mainstream. Artificial intelligence (AI) and machine learning are other important tools being adopted to manage and process massive amounts of data on the virus.

One specific application of AI during COVID-19 has been an attempt to use it to diagnose the disease with computed tomography (CT) imaging. Although the accuracy of AI in this setting is still being explored, as discussed in correspondence to the Lancet Digital Health on May 1, 2020, and in a blog from the Brookings Institute, the interest in, and research on, using AI in medical imaging during the pandemic may accelerate its use for medical imaging in general.1,2

ad goes here:advert-1
ADVERTISEMENT
SCROLL TO CONTINUE

Berend Stoel, PhD, a computer scientist in the division of medical image processing, Radiology, at Leiden University Medical Center, The Netherlands, thinks so. “There are already several research projects ongoing to apply AI in interpreting chest CTs of patients suspected of having COVID-19,” says Dr. Stoel, who published a review of current and potential uses of AI and machine learning in imaging in rheumatology in the January 2020 issue of RMD Open.3

“This will boost the AI development in imaging in general, and rheumatologic applications of AI will benefit from this as well,” Dr. Stoel says.

ad goes here:advert-2
ADVERTISEMENT
SCROLL TO CONTINUE

Along with imaging, AI and machine learning are being looked at for an array of potential applications within rheumatology, such as disease detection and stratification, prediction of disease flares, prediction of disease progression and use of genetic biomarkers to personalize treatment, as discussed in a 2020 review by Hügle et al.4

This is just a sampling of potential applications opening up for rheumatologists as physicians grapple with how to harness the power of big data and sophisticated technological processing tools.

Given the broad scope of research on AI and machine learning, this article focuses on the area in which these tools may first be applied in rheumatology practices—imaging.

“I think imaging is the entry for AI in rheumatology,” says Thomas Hügle, MD, PhD, head of, and professor in, the Department of Rheumatology, University Hospital, Lausanne, Switzerland. Crucial among the reasons for this is the wide availability of data in radiology on which AI and machine learning depends to create algorithms.

“Imaging is data driven, and data are what we really need for machine learning,” he says.

Page: 1 2 3 4 | Single Page
Share: 

Filed under:ConditionsInformation TechnologyTechnology Tagged with:artificial intelligencebig dataimagingmachine learningTechnology

Related Articles

    Artificial Intelligence in Medicine: The Future Is Now

    August 26, 2020

    Advancements in technology and artificial intelligence designed to aid rheumatologists in diagnosing patients and predicting mortality risk were discussed in depth during a session of the European e-Congress of Rheumatology.

    Bharat Kumar, MD

    Exploring the Role of Artificial Intelligence in Rheumatology

    November 4, 2022

    I looked at the joints. They spoke back to me—”I need more humanism,” they whispered. To longtime readers, those two sentences may sound both familiar and alien, perhaps even a little humorous. That’s because those sentences were generated entirely by a computer using artificial intelligence (AI). It was simple, too: I just copied the text…

    Beyond Trial & Error: RheumMadness 2022 AI: TNFi Response Scouting Report

    February 14, 2022

    As the capabilities of machine learning and artificial intelligence improve, rheumatologists have access to more data than ever, which may enable them to better predict which patients will respond to specific treatments, such as tumor necrosis factor inhibitors.

    How Advances in Artificial Intelligence May Aid Rheumatology

    December 19, 2018

    From digital scribes to predictive pharmacology—as artificial intelligence advances, technology has a lot to offer medicine. What opportunities lie ahead for rheumatologists and their patients?

  • About Us
  • Meet the Editors
  • Issue Archives
  • Contribute
  • Advertise
  • Contact Us
  • Copyright © 2025 by John Wiley & Sons, Inc. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies. ISSN 1931-3268 (print). ISSN 1931-3209 (online).
  • DEI Statement
  • Privacy Policy
  • Terms of Use
  • Cookie Preferences