The Rheumatologist
COVID-19 News
  • Connect with us:
  • Facebook
  • Twitter
  • LinkedIn
  • YouTube
  • Feed
  • Home
  • Conditions
    • Rheumatoid Arthritis
    • SLE (Lupus)
    • Crystal Arthritis
      • Gout Resource Center
    • Spondyloarthritis
    • Osteoarthritis
    • Soft Tissue Pain
    • Scleroderma
    • Vasculitis
    • Systemic Inflammatory Syndromes
    • Guidelines
  • Resource Centers
    • Ankylosing Spondylitis Resource Center
    • Gout Resource Center
    • Rheumatoid Arthritis Resource Center
    • Systemic Lupus Erythematosus Resource Center
  • Drug Updates
    • Biologics & Biosimilars
    • DMARDs & Immunosuppressives
    • Topical Drugs
    • Analgesics
    • Safety
    • Pharma Co. News
  • Professional Topics
    • Ethics
    • Legal
    • Legislation & Advocacy
    • Career Development
      • Certification
      • Education & Training
    • Awards
    • Profiles
    • President’s Perspective
    • Rheuminations
  • Practice Management
    • Billing/Coding
    • Quality Assurance/Improvement
    • Workforce
    • Facility
    • Patient Perspective
    • Electronic Health Records
    • Apps
    • Information Technology
    • From the College
    • Multimedia
      • Audio
      • Video
  • Resources
    • Issue Archives
    • ACR Convergence
      • Systemic Lupus Erythematosus Resource Center
      • Rheumatoid Arthritis Resource Center
      • Gout Resource Center
      • Abstracts
      • Meeting Reports
      • ACR Convergence Home
    • American College of Rheumatology
    • ACR ExamRheum
    • Research Reviews
    • ACR Journals
      • Arthritis & Rheumatology
      • Arthritis Care & Research
      • ACR Open Rheumatology
    • Rheumatology Image Library
    • Treatment Guidelines
    • Rheumatology Research Foundation
    • Events
  • About Us
    • Mission/Vision
    • Meet the Authors
    • Meet the Editors
    • Contribute to The Rheumatologist
    • Subscription
    • Contact
  • Advertise
  • Search
You are here: Home / Articles / Researchers Target Altered T Cell Metabolism in SLE to Reverse Lupus Immuno-Phenotype

Researchers Target Altered T Cell Metabolism in SLE to Reverse Lupus Immuno-Phenotype

February 1, 2016 • By Lara C. Pullen, PhD

  • Tweet
  • Email
Print-Friendly Version / Save PDF

GENERIC_Science_Research_500x270Patients with systemic lupus erythematosus (SLE) have abnormal T cell populations. Specifically, they have a decreased percentage of CD4+CD45RA+CCR7+ Tn cells and a corresponding increase in CD4+CD45–CCR7+Tcm cells, which results in an altered Tn/Tcm profile when compared with healthy individuals. The T cells in patients with lupus also have defective interleukin-2 (IL-2) production. Research has shown that activated T cells upregulate glycolysis following activation in a manner similar to that seen in cancer cells. Thus, naive and activated CD4+ T cell subsets have distinct metabolic profiles. Typically, T cell metabolism is then regulated via the dual inhibition of glycolysis and mitochondrial metabolism.

You Might Also Like
  • Researchers Find the Switch that Underlies Macrophage Metabolism
  • High-Salt Diet May Trigger Gene Silencing & a Lupus Phenotype
  • Researchers Hone in on Defect in Autophagy that May Underlie Lupus
Also By This Author
  • Early, Aggressive Therapy for RA May Result in Cost Savings Long Term

Yiming Yin, a graduate student at the University of Florida in Gainseville, Fla., and colleagues questioned whether a defective CD4+ T cell metabolism might underlie both murine and human SLE. They published the results of their analysis of T cell metabolism and lupus in February 2015 in Science Translational Medicine. The researchers noted that several diseases can be treated by such metabolic modulators as rapamycin, N-acetylcysteine, metformin and 2-deoxy-D-glucose (2DG). They, thus, investigated whether drugs that target glycolysis and mitochondrial metabolism might be able to normalize TC CD4+ T cell functions, thereby affecting disease pathology.

ad goes here:advert-1
ADVERTISEMENT
SCROLL TO CONTINUE

The investigators began their experiments in lupus prone B6.Sle1.Sle2.Sle3 (TC) mice. They focused on these mice because their CD4+ T cells have multiple immune abnormalities that are characteristic of lupus pathogenesis. The analysis revealed that the CD4+ T cells from TC mice also show an increased expression of glycolytic genes Hif1a, Hk2, and Slc16a3. They then performed an in vitro experiment and treated the T cells from the TC mice with metformin. They found that such treatment was able to restore the defective IL-2 production.

Researchers next sought to treat the mice with metabolic modulators. To target both the glucose and mitochondrial metabolisms, they treated TC mice with a combination of metformin (Met) and 2DG (Met + 2DG). The researchers found that such a treatment was able to normalize T cell metabolism and reverse disease biomarkers. Specifically, Met + 2DG decreased the percentage of total splenic CD4+ T cells and decreased the percentage of CD69+ (Tem expression). The treated mice maintained their body weight and blood glucose.

ad goes here:advert-2
ADVERTISEMENT
SCROLL TO CONTINUE

The investigators then sought to understand the relative contribution of Met and 2DG in disease reversal. They found that the combination therapy was superior to Met or 2DG alone, which suggested to them that Met and 2DG worked synergistically to reverse the lupus phenotype. When they tested two additional mouse models of lupus (NZB/W mice and chronic graft-vs.-host disease-induced lupus), they found that, in both cases, treatment with Met + 2DG reduced CD4+ T cell metabolism and reduced the production of anti-dsDNA IgG.

Pages: 1 2 | Single Page

Filed Under: Conditions, SLE (Lupus) Tagged With: CD4, metabolism, T cell

You Might Also Like:
  • Researchers Find the Switch that Underlies Macrophage Metabolism
  • High-Salt Diet May Trigger Gene Silencing & a Lupus Phenotype
  • Researchers Hone in on Defect in Autophagy that May Underlie Lupus
  • Study Reveals Role of IL-17–Secreting CD4+ T Cells in Lupus

Simple Tasks

Learn more about the ACR’s public awareness campaign and how you can get involved. Help increase visibility of rheumatic diseases and decrease the number of people left untreated.

Visit the Simple Tasks site »

ACR Convergence

Don’t miss rheumatology’s premier scientific meeting for anyone involved in research or the delivery of rheumatologic care or services.

Visit the ACR Convergence site »

Rheumatology Research Foundation

The Foundation is the largest private funding source for rheumatology research and training in the U.S.

Learn more »

The Rheumatologist newsmagazine reports on issues and trends in the management and treatment of rheumatic diseases. The Rheumatologist reaches 11,500 rheumatologists, internists, orthopedic surgeons, nurse practitioners, physician assistants, nurses, and other healthcare professionals who practice, research, or teach in the field of rheumatology.

About Us / Contact Us / Advertise / Privacy Policy / Terms of Use

  • Connect with us:
  • Facebook
  • Twitter
  • LinkedIn
  • YouTube
  • Feed

Copyright © 2006–2021 American College of Rheumatology. All rights reserved.

ISSN 1931-3268 (print)
ISSN 1931-3209 (online)

loading Cancel
Post was not sent - check your email addresses!
Email check failed, please try again
Sorry, your blog cannot share posts by email.
This site uses cookies: Find out more.