Video: Every Case Tells a Story| Webinar: ACR/CHEST ILD Guidelines in Practice

An official publication of the ACR and the ARP serving rheumatologists and rheumatology professionals

  • Conditions
    • Axial Spondyloarthritis
    • Gout and Crystalline Arthritis
    • Myositis
    • Osteoarthritis and Bone Disorders
    • Pain Syndromes
    • Pediatric Conditions
    • Psoriatic Arthritis
    • Rheumatoid Arthritis
    • Sjögren’s Disease
    • Systemic Lupus Erythematosus
    • Systemic Sclerosis
    • Vasculitis
    • Other Rheumatic Conditions
  • FocusRheum
    • ANCA-Associated Vasculitis
    • Axial Spondyloarthritis
    • Gout
    • Psoriatic Arthritis
    • Rheumatoid Arthritis
    • Systemic Lupus Erythematosus
  • Guidance
    • Clinical Criteria/Guidelines
    • Ethics
    • Legal Updates
    • Legislation & Advocacy
    • Meeting Reports
      • ACR Convergence
      • Other ACR meetings
      • EULAR/Other
    • Research Rheum
  • Drug Updates
    • Analgesics
    • Biologics/DMARDs
  • Practice Support
    • Billing/Coding
    • EMRs
    • Facility
    • Insurance
    • QA/QI
    • Technology
    • Workforce
  • Opinion
    • Patient Perspective
    • Profiles
    • Rheuminations
      • Video
    • Speak Out Rheum
  • Career
    • ACR ExamRheum
    • Awards
    • Career Development
  • ACR
    • ACR Home
    • ACR Convergence
    • ACR Guidelines
    • Journals
      • ACR Open Rheumatology
      • Arthritis & Rheumatology
      • Arthritis Care & Research
    • From the College
    • Events/CME
    • President’s Perspective
  • Search

Thinking Big, Thinking Small

Philip Seo, MD, MHS  |  Issue: June 2019  |  June 17, 2019

Thinking Big

Why do patients develop Kawasaki’s disease? The answer, my friends, is blowing in the wind. We think.

For 50 years following the initial description of Kawasaki’s disease, episodic epi­demics have been identified in Japan, the U.S. and elsewhere. The mystery has been why these epidemics emerge at a specific time and place.

ad goes here:advert-1
ADVERTISEMENT
SCROLL TO CONTINUE

The three largest epidemics of Kawasaki’s disease occurred in Japan in April 1979, May 1982 and March 1986. Investigators from the U.S. and Japan analyzed environmental factors, such as sea level pressure and surface winds, in the months preceding each epidemic.8

The investigators learned that each epidemic was preceded by a shift in the direction of the wind. Typically, in the months associated with a low incidence of Kawasaki’s disease, the winds over Japan come from the south or the northeast. When the origin of the wind changes to Central Asia, blowing over Japan from the northwest side of the island, rates of Kawasaki’s disease start to spike. Some data indicate the same winds from Central Asia, blowing across the Pacific, may be responsible for peaks in the incidence of Kawasaki’s disease in San Diego.

ad goes here:advert-2
ADVERTISEMENT
SCROLL TO CONTINUE

What is in the air from the steppes of Central Asia that is causing children to develop Kawasaki’s disease? It could be, quite literally, anything—multiple organisms could survive airborne in the long trip from Asia to Southern California, and no one knows if the etiologic agent is a single pathogen. Dr. Yeung hypothesizes it may be a class of organisms or molecules, all of which induce the same pathologic response in the right host.3

Who is the right host? Genetically, humans are 99.9% alike. The risk of developing Kawasaki’s disease likely lies in that crucial 0.1% difference. One method of determining what genetic difference may confer an increased risk is to look at single-nucleotide polymorphisms, or SNPs. There are 10 million polymorphic SNPs in the human genome, meaning that, at 10 million points in your DNA, you may have an adenine, while the person reading this article over your shoulder may have a guanine or another nucleotide.9

This is a little different than Mendelian genetics. Any individual SNP is unlikely to create a problem. It is likely a specific combination of SNPs that places an individual at risk. Determining which specific SNPs are associated with a given diagnosis may lead to additional insights into the genes that are important to disease pathogenesis.

How do we find these SNPs? A genome-wide association study (GWAS) is based on the hypothesis that if a genetic variant is associated with a given illness, then that variant should be more common among patients with the disease than in patients without. Interestingly, the GWAS approach itself is hypothesis free: You don’t have to know what you are looking for. You just look. Unburdened by hypotheses, this approach is less likely to be flawed by our own preconceived notions of what we should find.

In the days of Sanger sequencing, a GWAS would have been impossible. With advances in technology bringing down the cost and labor associated with genotyping, genome-wide association studies have been used to identify genetic variants associated with bipolar disorder, coronary artery disease, hypertension, Crohn’s disease, rheumatoid arthritis, diabetes and many other diseases—including Kawasaki’s.

In 2009, the International Kawasaki Disease Genetics Consortium conducted a GWAS in 893 patients with Kawasaki’s disease. This study identified a single functional network of five genes involved with inflammation, apoptosis and cardiovascular pathology.10 This network may provide new treatment targets, but longer term, may also explain why some children are so sensitive to winds from the central steppes.

The story of Kawasaki’s disease is the story of thinking big. The work on environmental factors associated with Kawasaki’s disease involved investigators from four institutions on three continents. The work of the International Kawasaki Disease Genetics Consortium includes investigators from Australia, The Netherlands, Singapore, the United Kingdom and the U.S. Together, these investigators—looking at large datasets representing large groups of patients with a rare disease—are making observations and advances that would have been out of reach for any single institution.

At the same time, however, I hope we don’t lose sight of the fact that all of this was dependent on individuals thinking small. It was one physician, fascinated by a single case of a single child, who was discharged a few days after he met him, that led to the first descriptions of Kawasaki’s disease. Another physician, similarly entranced by a single case, connected Kawasaki’s disease to the presence of coronary arteritis.

Big data would never identify such outliers. They would be excluded from the initial analysis because they did not meet study criteria. Or they would end up being represented by a single dot, well past the 75th percentile in the box plot, likely without further comment. Large consortiums of investigators and patients clearly bring new potential for new insights, but I hope we do not lose sight of the importance of the single observation to discovery. Rheumatology is just now starting to think big, and we are all the better for it, but at the same time, I hope we don’t forget how to think small.

Page: 1 2 3 | Single Page
Share: 

Filed under:ConditionsVasculitis Tagged with:ANCA-Associated Vasculitisanti-neutrophil cytoplasmic antibodies (ANCA)genomicsInternational Vasculitis and ANCA WorkshopKawasaki disease

Related Articles
    Dr. Kawasaki

    Tomisaku Kawasaki, Pediatrician Who Discovered Disease That Bears His Name, Dies at 95

    June 18, 2020

    Japanese pediatrician Tomisaku Kawasaki, MD, who identified an inflammatory syndrome that affects children, died on June 5 in Tokyo. He was 95. Tenacity & Attention to Detail Born Feb. 7, 1925, in Tokyo, Dr. Kawasaki graduated from medical school at what is now Chiba University in Chiba, Japan, in 1948 and worked as staff pediatrician…

    MIA Studio / shutterstock.com

    Kawasaki Guideline Urges Treatment Intensification for Some Patients

    December 16, 2021

    A soon-to-be published guideline from the ACR and the Vasculitis Foundation on Kawasaki disease underscores the importance of early diagnosis and intensified treatment for people with this serious condition.1 Intravenous immunoglobulin (IVIG) remains the treatment mainstay, and prompt, aggressive treatment may be able to reduce the risk of serious complications in some patients. The guideline…

    Exploring Kawasaki Disease

    April 2, 2014

    New epidemiologic data, clinical studies have shed light on diagnosis, treatments, patient outcomes for this childhood disease, but etiology is still unknown

    Case Report: Hydralazine-Induced ANCA-Associated Vasculitis

    February 16, 2021

    Hydralazine has been in use as a treatment for hypertension, most notably in heart failure patients, since 1951.1 The drug is a known cause of autoimmune disease, most specifically hydralazine-induced lupus.  Hydralazine-induced lupus occurs in 7–13% of those taking the medication.2-4 It often presents with constitutional symptoms, arthritis/arthralgias, cutaneous lesions, sero­sitis, myalgias and/or hepatomegaly. Features…

  • About Us
  • Meet the Editors
  • Issue Archives
  • Contribute
  • Advertise
  • Contact Us
  • Copyright © 2025 by John Wiley & Sons, Inc. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies. ISSN 1931-3268 (print). ISSN 1931-3209 (online).
  • DEI Statement
  • Privacy Policy
  • Terms of Use
  • Cookie Preferences