The Rheumatologist
COVID-19 NewsACR Convergence
  • Connect with us:
  • Facebook
  • Twitter
  • LinkedIn
  • YouTube
  • Feed
  • Home
  • Conditions
    • Rheumatoid Arthritis
    • SLE (Lupus)
    • Crystal Arthritis
      • Gout Resource Center
    • Spondyloarthritis
    • Osteoarthritis
    • Soft Tissue Pain
    • Scleroderma
    • Vasculitis
    • Systemic Inflammatory Syndromes
    • Guidelines
  • Resource Centers
    • Axial Spondyloarthritis Resource Center
    • Gout Resource Center
    • Psoriatic Arthritis Resource Center
    • Rheumatoid Arthritis Resource Center
    • Systemic Lupus Erythematosus Resource Center
  • Drug Updates
    • Biologics & Biosimilars
    • DMARDs & Immunosuppressives
    • Topical Drugs
    • Analgesics
    • Safety
    • Pharma Co. News
  • Professional Topics
    • Ethics
    • Legal
    • Legislation & Advocacy
    • Career Development
      • Certification
      • Education & Training
    • Awards
    • Profiles
    • President’s Perspective
    • Rheuminations
    • Interprofessional Perspective
  • Practice Management
    • Billing/Coding
    • Quality Assurance/Improvement
    • Workforce
    • Facility
    • Patient Perspective
    • Electronic Health Records
    • Apps
    • Information Technology
    • From the College
    • Multimedia
      • Audio
      • Video
  • Resources
    • Issue Archives
    • ACR Convergence
      • Gout Resource Center
      • Axial Spondyloarthritis Resource Center
      • Psoriatic Arthritis
      • Abstracts
      • Meeting Reports
      • ACR Convergence Home
    • American College of Rheumatology
    • ACR ExamRheum
    • Research Reviews
    • ACR Journals
      • Arthritis & Rheumatology
      • Arthritis Care & Research
      • ACR Open Rheumatology
    • Rheumatology Image Library
    • Treatment Guidelines
    • Rheumatology Research Foundation
    • Events
  • About Us
    • Mission/Vision
    • Meet the Authors
    • Meet the Editors
    • Contribute to The Rheumatologist
    • Subscription
    • Contact
  • Advertise
  • Search
You are here: Home / Articles / New Data May Explain the Role of Sclerostin in Bone Formation

New Data May Explain the Role of Sclerostin in Bone Formation

October 9, 2017 • By Lara C. Pullen, PhD

  • Tweet
  • Email
Print-Friendly Version / Save PDF

Humans and mice who have a deficiency in sclerostin present with a high-bone-mass phenotype. This finding has led pharmaceutical companies to develop several monoclonal antibodies that block sclerostin, with the hope that these antibodies will prove useful as treatments for osteoporosis. New data in mice reinforce the idea that the combination of sclerostin-neutralizing antibodies and physical activity may increase bone mass.

You Might Also Like
  • The Right Load: Insights into Age-Impaired Mechanoadaptive Cortical Bone Response
  • Denosumab Does Not Stimulate Early Bone Formation
  • Orexin’s Yin/Yang Functions Regulate Bone Remodeling
Also By This Author
  • Osteoporosis Experts Discuss Bisphosphonates, Chronic Kidney Disease

David Pflanz, a graduate student at Charite-Universitatsmedizin Berlin in Germany, and colleagues published the results of their research online Aug. 25 in Scientific Reports.1 The investigators focused their attention on mice engineered without the gene for sclerostin (i.e., Sost-knockout mice) to investigate the role of sclerostin in the structural adaptation of the tibia via surface modeling, remodeling and mechanical loading. They first examined if there were a difference in load transmission between Sost deficient mice and littermate controls.

ad goes here:advert-1
ADVERTISEMENT
SCROLL TO CONTINUE

“In this study, we examined whether in vivo tibial loading [for two weeks] could enhance bone formation and reduce bone resorption in young and adult female [Sost-knockout mice] and [littermate control] mice,” write the authors in their discussion. “We hypothesized that the bone formation and resorption response to mechanical loading is not affected by Sost deficiency, but is affected by skeletal maturation. We investigated changes in cortical bone morphology and the adaptive (re)modeling response using in vivo microCT imaging, registered microCT data as a 4D imaging biomarker of bone formation and resorption, and conventional 2D histomorphometry.”

The investigators found that, contrary to their hypothesis, the cortical adaptive response was enhanced in Sost-knockout mice compared with littermate control mice and that the knockout mice were more readily able to form cortical bone. Specifically, Sost-knockout mice had greater load-induced increases in periosteal bone formation rates and newly mineralized surface areas than did the littermate control mice. Moreover, when the researchers closely examined the dynamic microCT measures, they found the loaded limb had a significantly greater volume of newly formed bone than the control limb in both young and adult Sost-knockout mice. In contrast, only the young littermate control mice —not the old mice—had a significantly increased volume of newly formed bone in the loaded compared with the control limbs.

ad goes here:advert-2
ADVERTISEMENT
SCROLL TO CONTINUE

The researchers also found the ablation of the Wnt inhibitor Sost in the Sost-knockout mice led to increased expression of another Wnt inhibitor, Dkk1. When they looked more closely at the young Sost-knockout mice, they found that, at eight hours, the loaded limb had significantly decreased its expression of the Wnt inhibitor Dkk1 relative to the non-loaded limb.

“Our study is the first to examine the effect of mechanical loading on Wnt signaling under sclerostin ablation,” they note. These results suggest that Dkk1 plays a compensatory role in the absence of Sost.

In both Sost-knockout and littermate control mice, skeletal maturation led to increased cortical thickness, cortical area fraction and reduced bone formation in control bones. Although the authors note this change occurred with age, they did not investigate the mechanoresponsiveness of elderly Sost-knockout mice. Thus, the authors emphasize that this factor remains to be resolved, and therefore, any treatment strategy should consider the influence of age on ultimate bone mass gains.

ad goes here:advert-3
ADVERTISEMENT
SCROLL TO CONTINUE

Lara C. Pullen, PhD, is a medical writer based in the Chicago area.

Reference

  1. Pflanz D, Birkhold AI, Albiol L, et al. Sost deficiency led to a greater cortical bone formation response to mechanical loading and altered gene expression. Sci Rep. 2017 Aug 25;7(1):9435. doi: 10.1038/s41598-017-09653-9.

Pages: 1 2 | Multi-Page

Filed Under: Conditions Tagged With: bone, bone formation, Osteoporosis, sclerostin

You Might Also Like:
  • The Right Load: Insights into Age-Impaired Mechanoadaptive Cortical Bone Response
  • Denosumab Does Not Stimulate Early Bone Formation
  • Orexin’s Yin/Yang Functions Regulate Bone Remodeling
  • ACR/ARHP Annual Meeting 2012: New Insights into Bone Erosion and Formation Heighten Prospects for Therapies

American College of Rheumatology

Visit the official website for the American College of Rheumatology.

Visit the ACR »

Rheumatology Research Foundation

The Foundation is the largest private funding source for rheumatology research and training in the U.S.

Learn more »

Meeting Abstracts

Browse and search abstracts from the ACR Convergence and ACR/ARP Annual Meetings going back to 2012.

Visit the Abstracts site »

The Rheumatologist newsmagazine reports on issues and trends in the management and treatment of rheumatic diseases. The Rheumatologist reaches 11,500 rheumatologists, internists, orthopedic surgeons, nurse practitioners, physician assistants, nurses, and other healthcare professionals who practice, research, or teach in the field of rheumatology.

About Us / Contact Us / Advertise / Privacy Policy / Terms of Use / Cookie Preferences

  • Connect with us:
  • Facebook
  • Twitter
  • LinkedIn
  • YouTube
  • Feed

Copyright © 2006–2023 American College of Rheumatology. All rights reserved.

ISSN 1931-3268 (print)
ISSN 1931-3209 (online)