The Rheumatologist
COVID-19 News
  • Connect with us:
  • Facebook
  • Twitter
  • LinkedIn
  • YouTube
  • Feed
  • Home
  • Conditions
    • Rheumatoid Arthritis
    • SLE (Lupus)
    • Crystal Arthritis
      • Gout Resource Center
    • Spondyloarthritis
    • Osteoarthritis
    • Soft Tissue Pain
    • Scleroderma
    • Vasculitis
    • Systemic Inflammatory Syndromes
    • Guidelines
  • Resource Centers
    • Ankylosing Spondylitis Resource Center
    • Gout Resource Center
    • Rheumatoid Arthritis Resource Center
    • Systemic Lupus Erythematosus Resource Center
  • Drug Updates
    • Biologics & Biosimilars
    • DMARDs & Immunosuppressives
    • Topical Drugs
    • Analgesics
    • Safety
    • Pharma Co. News
  • Professional Topics
    • Ethics
    • Legal
    • Legislation & Advocacy
    • Career Development
      • Certification
      • Education & Training
    • Awards
    • Profiles
    • President’s Perspective
    • Rheuminations
  • Practice Management
    • Billing/Coding
    • Quality Assurance/Improvement
    • Workforce
    • Facility
    • Patient Perspective
    • Electronic Health Records
    • Apps
    • Information Technology
    • From the College
    • Multimedia
      • Audio
      • Video
  • Resources
    • Issue Archives
    • ACR Convergence
      • Systemic Lupus Erythematosus Resource Center
      • Rheumatoid Arthritis Resource Center
      • Gout Resource Center
      • Abstracts
      • Meeting Reports
      • ACR Convergence Home
    • American College of Rheumatology
    • ACR ExamRheum
    • Research Reviews
    • ACR Journals
      • Arthritis & Rheumatology
      • Arthritis Care & Research
      • ACR Open Rheumatology
    • Rheumatology Image Library
    • Treatment Guidelines
    • Rheumatology Research Foundation
    • Events
  • About Us
    • Mission/Vision
    • Meet the Authors
    • Meet the Editors
    • Contribute to The Rheumatologist
    • Subscription
    • Contact
  • Advertise
  • Search
You are here: Home / Articles / New Insights into Cartilage & Tendon Differentiation

New Insights into Cartilage & Tendon Differentiation

December 19, 2016 • By Lara C. Pullen, PhD

  • Tweet
  • Email
Print-Friendly Version / Save PDF

dreamstime_bonejoint_500x270Traditionally, researchers use the expression of either Sox9 or Scx to identify cartilage and tendon progenitors in the limbs, but they also increasingly recognize that these differentiated cells exhibit phenotypic plasticity. To investigate this plasticity further, investigators have developed organo-typic models for cartilage and tendon. The in vitro models of musculoskeletal biology have been widely used, even though some experts question whether or not they actually mimic musculoskeletal tissue. Additionally, although studies to date have revealed that many signaling pathways contribute to the dedifferentiation and redifferentiation pathways of cartilage and tendon, the underlying gene regulatory mechanisms behind the differentiation remain elusive. Consequently, investigators do not know which of these many pathways is likely to dominate during health and disease.

You Might Also Like
  • High-Salt Diet May Trigger Gene Silencing & a Lupus Phenotype
  • Telomere Length Provides Insights into Cartilage Aging and Repair
  • New Methodology to Improve Cartilage Repair
Also By This Author
  • The Role of T Cells in Celiac Disease

A recent in vitro study suggests that oxidative stress and P13K signaling pathways are key modulators of the phenotype of cells of musculoskeletal origin. Alan J. Mueller, BSc, BVM&S, MRes, MRCVS, a postdoctoral research associate at the University of Liverpool in the U.K., and colleagues published their analysis of chondrocyte differentiation online on Sept. 27 in Scientific Reports.1 The investigators sought to establish a framework that could drive rational improvements in cell culture models of cartilage and tendon. To accomplish this element, they used a systems biology network approach and analyzed gene expression profiles of cells in monolayer and three-dimensional cultures. Their experiments confirmed that dedifferentiation occurred via reductions in the expression of genes that are hallmarks of functionality in cartilage (Col2a1, Agcn) and tendon (Tnmd, Serpinf1).

ad goes here:advert-1
ADVERTISEMENT
SCROLL TO CONTINUE

The scientists began their research by culturing musculoskeletal cells in a monolayer. They found that, as the cells proliferated in vitro, they had a similar synthetic profile to predifferentiated mesenchymal cells. Specifically, the cultured musculoskeletal cells experienced phenotypic drift that converged in passage five into the gene expression profiles for chondrocytes, tenocytes and dermal fibroblasts. They further identified TGF-β as the master regulator of phenotype in the monolayer cultures. These results prompted the investigators to raise concerns that the convergence of gene expression profiles during monolayer expansion of cartilage and tendon cells implied that the monolayer culture system was not physiologically relevant.

To visualize musculoskeletal cell responses to novel environments, the team turned to three-dimensional culture models. They found that, unlike in monolayer culture, PDGF BB was the master regulator of phenotype in the three-dimensional system. Additionally, the three-dimensional constructs caused an increase in markers of oxidative stress and hypoxia. The authors found this particularly noteworthy because oxidative stress is considered to play an important role in the development of the dysfunctional cartilage and tendon seen in patients with osteoarthritis and tendinopathy. The investigators also found increased expression of chondrogenic and tenogenic markers, increased expression of inflammatory chemokines and a lack of expression of functional differentiation markers in the cells cultured in the three-dimensional model. They note, however, that although these signaling pathways are associated with cartilage and tendon disease, the gene regulatory mechanisms may not be the underlying cause of disease.

ad goes here:advert-2
ADVERTISEMENT
SCROLL TO CONTINUE

The authors conclude by emphasizing the common regulatory mechanisms governing de- and redifferentiation transitions in cartilage and tendon cells. They also note that, in its totality, their research provides testable networks that can be used for future analyses of sustained or directed differentiation of cartilage and tendon.


Lara C. Pullen, PhD, is a medical writer based in the Chicago area.

Reference

ad goes here:advert-3
ADVERTISEMENT
SCROLL TO CONTINUE
  1. Mueller AJ, Tew SR, Vasieva O, et al. A systems biology approach to defining regulatory mechanisms for cartilage and tendon cell phenotypes. Sci Rep. 2016 Sep 27;6:33956. doi: 10.1038/srep33956.

Pages: 1 2 | Multi-Page

Filed Under: Conditions, Systemic Inflammatory Syndromes Tagged With: biology, carti, differentiation, Musculoskeletal, P13K, tendon

You Might Also Like:
  • High-Salt Diet May Trigger Gene Silencing & a Lupus Phenotype
  • Telomere Length Provides Insights into Cartilage Aging and Repair
  • New Methodology to Improve Cartilage Repair
  • Adenosine Treatment Promotes Cartilage Homeostasis

Meeting Abstracts

Browse and search abstracts from the ACR Convergence and ACR/ARP Annual Meetings going back to 2012.

Visit the Abstracts site »

American College of Rheumatology

Visit the official website for the American College of Rheumatology.

Visit the ACR »

Simple Tasks

Learn more about the ACR’s public awareness campaign and how you can get involved. Help increase visibility of rheumatic diseases and decrease the number of people left untreated.

Visit the Simple Tasks site »

The Rheumatologist newsmagazine reports on issues and trends in the management and treatment of rheumatic diseases. The Rheumatologist reaches 11,500 rheumatologists, internists, orthopedic surgeons, nurse practitioners, physician assistants, nurses, and other healthcare professionals who practice, research, or teach in the field of rheumatology.

About Us / Contact Us / Advertise / Privacy Policy / Terms of Use

  • Connect with us:
  • Facebook
  • Twitter
  • LinkedIn
  • YouTube
  • Feed

Copyright © 2006–2021 American College of Rheumatology. All rights reserved.

ISSN 1931-3268 (print)
ISSN 1931-3209 (online)

loading Cancel
Post was not sent - check your email addresses!
Email check failed, please try again
Sorry, your blog cannot share posts by email.
This site uses cookies: Find out more.